Optical properties and birefringence in LiInS2 in the terahertz frequency range

نویسندگان

  • Shanpeng Wang
  • Qijun Liang
  • Xutang Tao
  • Thomas Dekorsy
چکیده

The birefringence of LiInS2 (LIS) crystals in the THz frequency region is investigated by THz time-domain spectroscopy (THz-TDS). The experimental results indicate that LIS has large birefringence and low absorption in the THz frequency region. The optical properties of LIS are quantitatively determined. A sharp absorption caused by a TO-phonon resonance is observed at around 1.70 THz when the Z-axis is parallel to the polarization of the incident THz wave. A temporal separation of the transmitted THz pulses with different polarization components is realized by changing the orientation of the LIS crystal with respect to the polarization of the incident THz pulses. By controlling the relative phase and amplitude of the temporally separated THz pulses, THz polarization pulse shaping caused by birefringence in LIS crystal is demonstrated. ©2014 Optical Society of America OCIS codes: (300.6495) Spectroscopy, terahertz; (160.4330) Nonlinear optical materials; (260.1440) Birefringence; (320.5540) Pulse shaping. References and links 1. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009). 2. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005). 3. M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Buttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002). 4. B. Fischer, M. Hoffmann, H. Helm, R. Wilk, F. Rutz, T. Kleine-Ostmann, M. Koch, and P. Jepsen, “Terahertz time-domain spectroscopy and imaging of artificial RNA,” Opt. Express 13(14), 5205–5215 (2005). 5. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). 6. T. Löffler, T. Hahn, M. Thomson, F. Jacob, and H. Roskos, “Large-area electro-optic ZnTe terahertz emitters,” Opt. Express 13(14), 5353–5362 (2005). 7. J. T. Darrow, X. C. Zhang, and D. H. Auston, “Power scaling of large-aperture photoconducting antennas,” Appl. Phys. Lett. 58(1), 25–27 (1991). 8. D. You, R. R. Jones, P. H. Bucksbaum, and D. R. Dykaar, “Generation of high-power sub-single-cycle 500-fs electromagnetic pulses,” Opt. Lett. 18(4), 290–292 (1993). 9. S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011). 10. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003). 11. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005). 12. M. Jewariya, M. Nagai, and K. Tanaka, “Ladder climbing on the anharmonic intermolecular potential in an amino acid microcrystal via an intense monocycle terahertz pulse,” Phys. Rev. Lett. 105(20), 203003 (2010). 13. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-fieldinduced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012). 14. Y. S. Lee, N. Amer, and W. C. Hurlbut, “Terahertz pulse shaping via optical rectification in poled lithium niobate,” Appl. Phys. Lett. 82(2), 170–172 (2003). 15. H. Wen and A. M. Lindenberg, “Coherent terahertz polarization control through manipulation of electron trajectories,” Phys. Rev. Lett. 103(2), 023902 (2009). #201351 $15.00 USD Received 19 Nov 2013; revised 17 Jan 2014; accepted 18 Jan 2014; published 3 Mar 2014 (C) 2014 OSA 1 April 2014 | Vol. 4, No. 4 | DOI:10.1364/OME.4.000575 | OPTICAL MATERIALS EXPRESS 575 16. S. Fossier, S. Salaün, J. Mangin, O. Bidault, I. Thénot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, P. Petrov, J. Henningsen, A. Yelisseyev, L. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, and V. Sirutkaitis, “Optical, vibrational, thermal, electrical, damage, and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B 21(11), 1981–2007 (2004). 17. S. Wang, Z. Gao, X. Yin, G. Liu, H. Ruan, G. Zhang, Q. Shi, C. Dong, and X. Tao, “Crystal growth and piezoelectric, elastic and dielectric properties of novel LiInS2 crystal,” J. Cryst. Growth 362, 308–311 (2013). 18. S. Wang, H. Ruan, G. Liu, G. Zhang, Q. Shi, X. Zhang, Z. Gao, C. Dong, and X. Tao, “Growth, properties and first-principles study of mid-IR nonlinear optical crystal LiInS2,” J. Cryst. Growth 362, 271–275 (2013). 19. S. Wang, X. Tao, C. Dong, Z. Jiao, and M. Jiang, “Growth of LiInS2 single crystal by the accelerated crucible rotation technique,” J. Synth. Cryst. 36, 8–13 (2007). 20. L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, V. Malakhov, L. Dovlitova, J. J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218(2-4), 313–322 (2000). 21. L. Isaenko, I. Vasilyeva, A. Merkulov, A. Yelisseyev, and S. Lobanov, “Growth of new nonlinear crystals LiMX2 (M=Al, In, Ga; X=S, Se, Te) for the mid-IR optics,” J. Cryst. Growth 275(1-2), 217–223 (2005). 22. R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub50fs time resolution,” Opt. Express 18(6), 5974–5983 (2010). 23. P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, “Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling,” Appl. Opt. 26(19), 4303– 4309 (1987). 24. A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, “Optimum excitation conditions for the generation of highelectric-field terahertz radiation from an oscillator-driven photoconductive device,” Opt. Lett. 31(10), 1546– 1548 (2006). 25. G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B 16(8), 1204– 1212 (1999). 26. W. Zhang, A. K. Azad, and D. Grischkowsky, “Terahertz studies of carrier dynamics and dielectric response of n-type, freestanding epitaxial GaN,” Appl. Phys. Lett. 82(17), 2841–2843 (2003). 27. T. Ma, C. Yang, Y. Xie, L. Sun, W. Lv, R. Wang, C. Zhu, and M. Wang, “Electronic and optical properties of orthorhombic LiInS2 and LiInSe2: a density functional theory investigation,” Comput. Mater. Sci. 47(1), 99–105 (2009). 28. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28(10), 2057–2074 (1992). 29. G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett. 74(23), 3450–3452 (1999). 30. Y. Ding and I. Zotova, “Second-order nonlinear optical materials for efficient generation and amplification of temporally-coherent and narrow-linewidth terahertz waves,” Opt. Quantum Electron. 32(4/5), 531–552 (2000). 31. K. Takeya, Y. Takemoto, I. Kawayama, H. Murakami, T. Matsukawa, M. Yoshimura, Y. Mori, and M. Tonouchi, “Terahertz generation and optical properties of lithium ternary chalcogenide crystals,” J Infrared Milli Terahz Waves 32(4), 426–433 (2011). 32. M. Schall, M. Walther, and P. Uhd Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64(9), 094301 (2001). 33. J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

امکان جذب تراهرتز توسط چاه پتانسیل کوانتمی دو گانه و پایداری آن

In this paper, the optical properties of the quantum double folded potential well in the terahertz frequency region are investigated. The Schrödinger equation is solved and using the obtained wave functions, the standard density matrix and the iterative method the refractive index and the absorption coefficient in the first order is calculated and investigated. The results show that for the pro...

متن کامل

Transmission Properties of the Periodic Structures Based on Graphene Nonlinear Optical Conductivity in a Terahertz Field

By developing the terahertz (THz) technology, in addition to generators and detectors of THz waves, the existence of some tools such as modulators and filters are needed. THz filters are important tools for various applications in the field of chemical and biological sensors. Linear and nonlinear optical properties of the graphene have attracted lots of attention. In fact graphene exhibits vari...

متن کامل

Highly birefringent elliptical core photonic crystal fiber for terahertz application

We present a novel strategy for designing a highly birefringent photonic crystal fiber (PCF) with near zero flattened dispersion properties by applying elliptical air holes in the core area. The elliptical structure of the air holes in the porous-core region introduces asymmetry between x and y polarization modes, which consequently offers ultra-high birefringence. Also the compact geometry of ...

متن کامل

Optical properties of LiInSe2 in the THz frequency regime

We investigate the optical properties of LiInSe2 (LISe) by THz time-domain spectroscopy (THz-TDS). The experimental results indicate that LISe has excellent transparency in the THz frequency region. We determine quantitatively the birefringence of LISe. The refractive index and absorption coefficient along the three dielectric axes of LISe are reported in the THz frequency region. The lattice v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014